(数学)科(数学)学習指導案						
日時		平成 20 年 6 月 11 日(水)第 3 限	指導者		(省略)	
学	級	<u> </u>	教		6 0 1 教室	
単	元	元微分法の応用		書	新編 数学 (数研出版)	
単元 目標	1 1 2 3 5 4 3 5 1 s	曲線の接線・法線の方程式を公式として取り上げ、その意味を理解させる。 平均値の定理を用いて、導関数の値 に関数の増減の関係を考察させる。 導関数を利用して増減を調べ極値や 最大値、最小値を求めさせる。 第2次導関数を用いてグラフの凹凸 に調べ、変曲点を求めさせる。	指導	第1節 1 2 3 4問題 1 2 3	道 導関数の応用 接線の方程式 2 時間 平均値の定理 1 時間 関数の値の変化 4 時間 (本時はその2) 関数のグラフ 3 時間 (演習 1 時間 にいるいろな応用 方程式、不等式への応用 1 時間	
		き、加速度を調べて点の運動を追跡させる。 関数の極大と極小	課 2 題		-日一題を解いておく。 対学 の増減表を復習しておく。	
本	目標	2 増減表を利用して、極大値、極小値を求めることができるようにさせる。 				
n+		学習内容	時間 10		音導上の留意点・評価の観点 資料等 数学 における ほよ 佐	
時の	導入	数学 の極大値、極小値について復 習する。	10	小	数学 における極大値、極 復習プリント い値の定義について確認させ る。	
指		1 極大値、極小値について細かな定 義を確認する。	10		微分可能でない点でも極値 ととる場合があることに注意 させる。	
導	展	2 例題4を解く。	10		いろいろな関数の導関数に ついて確認させる。 (知識・理解)	
程	開	3 練習10を解く。	15	も こ ・ い	f'(a)=0であっても必ずし $Sx=a$ で極値とはならないことに留意させる。 関数が定義されない点についても注意させる。 (表現・処理)(知識・理解)	
	整理	1 本時のまとめをする。 2 次時の予告をする。	5		(ベベル ベンエノ(八川明 ・土所))	
次時 の 課題		1 一日一題を解いておく。 2 応用例題3を予習しておく。				
備考		(サイエンス)コース	生徒数 13 名(男子6名,女子7名)			